DISCRETE LAPLACE–BELTRAMI OPERATOR ON SPHERE AND OPTIMAL SPHERICAL TRIANGULATIONS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Laplace-Beltrami Operator on Sphere and Optimal Spherical Triangulations

In this paper we first modify a widely used discrete Laplace Beltrami operator proposed by Meyer et al over triangular surfaces, and then establish some convergence results for the modified discrete Laplace Beltrami operator over the triangulated spheres. A sequence of spherical triangulations which is optimal in certain sense and leads to smaller truncation error of the discrete Laplace Beltra...

متن کامل

Optimal Haar Wavelets on Spherical Triangulations

In a previous paper we constructed some Haar wavelets on spherical triangulations, which are orthogonal with respect to a weighted inner product on L2(S2). We obtained two classes of wavelets which included certain wavelets obtained by Bonneau and Nielson et al. Each of these classes depended on two parameters which satisfied a relation. In this paper we study which of these wavelets are optima...

متن کامل

The spherical mean value operator with centers on a sphere

Let B represent the ball of radius ρ in Rn and S its boundary; consider the map M : C∞ 0 (B) → C∞(S × [0,∞)) where (Mf)(p, r) = 1 ωn−1 ∫ |θ|=1 f(p+ rθ) dθ represents the mean value of f on a sphere of radius r centered at p. We summarize and discuss the results concerning the injectivity of M, the characterization of the range of M, and the inversion of M. There is a close connection between me...

متن کامل

Haar Wavelets on Spherical Triangulations

We construct piecewise constant wavelets on spherical triangulations, which are orthogonal with respect to a scalar product on L(S), defined in [3]. Our classes of wavelets include the wavelets obtained by Bonneau in [1] and by Nielson et all. in [2]. We also proved the Riesz stability and showed some numerical experiments.

متن کامل

Geometric triangulations and discrete Laplacians on manifolds

2 Euclidean structures 3 2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Weighted triangulations . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Thurston triangulations . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Duality triangulations . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 Equivalence of metric triangulations . . . . . . . . . . . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Geometry & Applications

سال: 2006

ISSN: 0218-1959,1793-6357

DOI: 10.1142/s0218195906001938